$${\mathbf n}$$ | $${\boldsymbol{\phi^n}}$$ | $${\boldsymbol{\frac{1}{\phi^n}}}$$ | $${\boldsymbol{\phi^n + \frac{1}{\phi^n}}}$$ | $${\boldsymbol{\phi^n - \frac{1}{\phi^n}}}$$ |
---|---|---|---|---|
1 | $${\frac{1 + \sqrt{5}}{2}}$$ | $${\frac{\sqrt{5} - 1}{2}}$$ | $${\sqrt{5}}$$ | $${1}$$ |
2 | $${\phi + 1 = \frac{3 + \sqrt{5}}{2} }$$ | $${1 - \frac{1}{\phi} = \frac{3 - \sqrt{5}}{2}}$$ | $${3}$$ | $${\sqrt{5}}$$ |
3 | $${\frac{4 + 2\sqrt{5}}{2}}$$ | $${\frac{2\sqrt{5} - 4}{2}}$$ | $${2\sqrt{5}}$$ | $${4}$$ |
4 | $${\frac{7 + 3\sqrt{5}}{2}}$$ | $${\frac{7 - 3\sqrt{5}}{2}}$$ | $${7}$$ | $${3\sqrt{5}}$$ |
5 | $${\frac{11 + 5\sqrt{5}}{2}}$$ | $${\frac{5\sqrt{5} - 11}{2}}$$ | $${5\sqrt{5}}$$ | $${11}$$ |
6 | $${\frac{18 + 8\sqrt{5}}{2}}$$ | $${\frac{18 - 8\sqrt{5}}{2}}$$ | $${18}$$ | $${8\sqrt{5}}$$ |
7 | $${\frac{29 + 13\sqrt{5}}{2}}$$ | $${\frac{13\sqrt{5} - 29}{2}}$$ | $${13\sqrt{5}}$$ | $${29}$$ |
8 | $${\frac{47 + 21\sqrt{5}}{2}}$$ | $${\frac{47 - 21\sqrt{5}}{2}}$$ | $${47}$$ | $${21\sqrt{5}}$$ |
\({\phi = \frac{1 + \sqrt{5}}{2}}\)
\({\phi^2 = \phi + 1}\)
\({1 - \phi = - \frac{1}{\phi}}\)
\({\phi - \frac{1}{\phi} = 1}\)
\({1 - \frac{1}{\phi} = \frac{1}{\phi^2}}\)
Golden Ratio Quiz